

Analysis PrototypeKevin Robair

24 August 1995

- Dynamic Linking and User Algorithms
- Expert Advisor/Decision Support System
- Numerical Analysis Tools

Dynamic Linking of User Algorithms

- Purpose
 - Establish reliability of dynamic linking as an implementation of user defined algorithms.
 - Verify capabilities of vendor supplied dynamic linking libraries provided with development systems.
- Approach
 - Used Sun libraries provided with Solaris 2.3 C++ compiler to build a dynamic linking class, which uses shared objects as input.
 - Used Sun Solaris 2.3 C, C++, and FORTRAN compilers to generate shared objects.
 - Shared objects were linked and executed using a prototype dynamic linking class.

Results

- Sun Solaris 2.3 proved to have excellent support for dynamic linking.
- HP documentation promises similar support.
- DEC, IBM, and SGI need further investigation, preliminary findings show support for dynamic linking among all three.
- Dynamic linking of FORTRAN shared objects from a C++ application was NOT successful

• Impact on Design

- Dynamic Linking is possible without vendor support, but is easier when support such as that provided with Solaris 2.3 is available

Future Goals

- Verify dynamic linking support on remaining platforms.
- Explore alternative methods of using FORTRAN in dynamic user algorithms

Expert Advisor / Decision Support System

- Goals
 - Gain experience with RTworks
 - Establish data interface with RTworks
 - Transfer SSR model from previous PRR, and improve based on latest SSR information
 - Allow FOT to use RTworks, in order to verify ops concept of the Expert Advisor as a modifiable tool
 - Integrate C language function calls into RTworks rules
- Approach
 - Connected mock data source to RTworks
 - Incorporated basic SSR maintenance goals into a set of rules in RTworks
 - Allowed FOT members to modify rules
 - Created mock display to verify operation

Results

- RTworks performed baseline SSR analysis smoothly
- Data interface with RTworks was easily implemented
- FOT found the RTworks rule editor easy to use, despite it's many features
- C function calls were integrated into RTworks rules with minimal effort
- Impact on Design
 - FOS will use RTworks as the engine for the Expert Advisor and Solid State Recorder analysis tool
- Future Goals
 - Create a larger rule base to test RTwork's efficiency
 - Add more parameters, such that real-time telemetry data rates are input into RTworks
 - Use prototype to further explore SSR management approach

Numerical Analysis Tools Study

- Purpose
 - Evaluate ECS available COTS packages for performing numerical analysis

IDL

IMSL

- Approach
 - Compare packages for baseline functionality
 - Compare packages for future extensibility
 - Compare packages for ease of use

Results

- IDL

Requires connection to stand alone process Interface to stand alone process is non-trivial Error handling is difficult Actual functions are very user friendly

- IMSL

C Library of numerical functions
Error handling is handed in standard C fashion
Functions are more complicated than IDL's and require more knowledge of complex numerical methods

- IMSL and IDL have similar functionality, however each package has features the other does not

- Impact on Design
 - Since IMSL satisfies baseline requirements, it will be used to satisfy current requirements
 - IDL will still be available if added functionality is required but not supported by IMSL